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The Hiller-Sucher-Feinberg density is not integrable* 
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Summary. The large-distance asymptotic behavior of the electron density ob- 
tained from the Hiller-Sucher-Feinberg identity is analyzed. It is shown that, 
unless the generating wavefunction is exact, such electron density decays like a 
polynomial in inverse powers of the distance. Therefore, the Hiller-Sucher- 
Feinberg density is not integrable in general. The sufficient conditions to be 
imposed upon the generating wavefunctions in order to assure integrability are 
spelled out. 
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1. Introduction 

It is well known that, in a Coulombic system described by a nonrelativistic 
Born-Oppenheimer Hamiltonian with the potential energy: 

= - - E  ZA ]ri --  rA 1--1 .q.. (1/21 Z '  I~i - ~ l - ' ,  (1) 
/,4 /j 

and the corresponding ground-state wavefunction ~({~;}), the long-distance 
behavior of the exact electron density: 

i 

is governed by the asymptotic law [ 1, 2]: 

Q(R) ~ A R  2~ exp[ -- (8Imin)~/2R], (3) 
where 

= - 1 + (2Imin) --1/2 Z ZA" (4) 
A 
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In Eqs. (3) and (4), A is a constant and Imin is the lowest ionization potential of 
the system in question. The existence of the asymptotic estimate, Eq. (3), 
guarantees finiteness of all multipole moments of the electron density. 

Another important property of the exact electron density is that given by the 
cusp condition of Kato [2, 3]. Unfortunately, since most of the modern ab ini t io  
electronic structure calculations employ cuspless Gaussian functions, usually the 
cusp condition is not even approximately satisfied by the computed electron 
densities. Moreover, the values of Q(/~) at nuclei are usually underestimated to a 
great extent. Hiller, Sucher, and Feinberg (HSF) [4] proposed an identity: 

O(/~) = (2~) -1 (7/I ~ / )e  (/~) I ~ ) ,  (5) 
i 

where 

(6) 
which can be used to circumvent this problem without invoking cusped basis 
functions. For exact wavefunctions, the densities Q(/?) and 0(/~) are identical. 
Equations (5) and (6), which follow from the hypervirial theorem, can be also 
generalized to scattering states [5], spin densities [6j, and higher dimensions [7]. 

Because Eq. (5) involves a global operator, O(R) is expected to approximate 
the exact electron density better than Q(R) for inexact wavefunctions. This is 
indeed the case for the densities at nuclei calculated with Gaussian basis functions 
[8]. However, one should be reminded that computation of 0(/~) is much more 
expensive than that of Q(/~) due to the fact that it involves complicated molecular 
integrals [8, 9, 10]. Also, as was shown by Larsson [11], 0(R) computed from the 
Hartree-Fock limit one-determinantal wavefunction approaches only the exact 
Hartree-Fock electron density. This means that, in order to include correlation 
effects in ~0(/~), one has to use correlated wavefunctions [12]. In such cases, at 
nuclei, O(R) is again found to be an improvement over Q(R) [13]. Finally, one may 
note that alternative definitions of improved electron densities [ 14] are less suitable 
from the computational point of view, since they require evaluation of three-elec- 
tron integrals. 

Although all previous studies investigated the HSF density at nuclei, one 
might argue that 0(R) could be also used in calculations of expectation values 
involving local operators, such as multipole moments. This is so because often 
the regions having large values of the electron density (such as those in the 
proximity to nuclei) contribute the most to the respective integrals. However, as 
this paper is intended to demonstrate, an unmodified HSF density cannot be 
used for such purposes. This is due to a fundamental flaw of O(R), namely the 
fact that it is generally not integrable (i.e., the integral ~ 0(/~) dR is infinite). 

2. Large-distance asymptotic behavior of the Hiller-Sucher-Feinberg density 

Using the convenient definitions: 

= R0, R = I/~[, (7) 

and 

ri = I~i], ~i = r71 ( r i  " O), (8) 
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Eq. (6) can be rewritten as: 

/~i(/~ ) = I~ i __ jl~]--3[~i .q_ RJ~(O) -~- R2Ci(~)] q-Iri -- R] 110/q_ R~r/(~)],  (9) 

with the auxiliary operators given by: 

d ,  = (5  x ¢ , )  • (~i x ¢,), (lO) 

Bi(/~) = --[(/~- X ¢i)  "(0 X ~ )  "-}- (q X Vi) "(r/ x V/)], (11) 

G (q) = (q x rT, ) • (q x ¢,), (12)  

G = F, • ( G i g ) ,  (13) 

and 

ff'~(q) = - q "  (fliP). (14) 

Derivation of the large R expansion of the HSF density is aided by the fact 
that, for large R, the integration over electronic coordinates in Eq. (5) can be 
confined to the inside of a hypersphere with a radius R. The error introduced by 
this truncation dies off with increasing R as quickly as IT ]2 does, i.e. exponen- 
tially. On the other hand, as demonstrated in the following, the leading asymp= 
totic terms for ~(R) have the form of negative powers of R. 

The derivation commences with the familiar multipole expansion (valid for 
ri < R) [15]: 

I~,-~1 ~=R 1 ~, (ri/d~)lel(¢i), (15) 
l=0 

where Pz is the l-th Legendre polynomial. Differentiating both sides of Eq. (15) 
with respect to ~,, followed by dividing by riR, yields: 

1/~i--/~1 3 = R - 3  ~ (r,/R)IP;+I(~), (r ,<R).  (16) 
l=0 

Combining Eqs. (9), (15), and (16), one arrives at: 

= , , (r,/R) {P,+, (¢i)[R-3A i + R-at~i(#) + R - ' C i  (/~)] 
l=O 

+ P,({,)[R-10, - + if/,(0)]}, (17) 

which is again valid for r,. < R. 
Equation (17) is the basis for the long-distance asymptotic 

expansion for 0(/?). From Eq. (5) one obtains: 

o(~)--, E O,(q)R-', (18)  
1=0 

where 

0, (O) = (2re) -1 < ~ [ E / ~  ~')(/1) I ~ ).  (19) 
i 

The partial operators/)}°(O ) contain only the angular dependence on/~ and are 
given by (compare Eq. (17)): 

/ )  }0)(0) = Po (¢i) Wi (O) = Wi (~), (20) 
0 9 ) ( 0 )  , ^ . = Pl(¢i)Ci(q) + Po(~i )~  Jr- P~(~,)r, IYV~(q) 

= Ci(#) + ~ + (?i" ~)l$'i(q), (21) 
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/~}2)(?~) = P'I (~i)~ (0) + Pi(¢;)r~d;(q) + P~(~;)r~O; + P2(~i)r 2 l'Jzi(t~) 

= J~,(q) + 3(F;. O)C;(q) + (~;" 0)0; + (1/2)[3(~;. O) 2 - ra]l,V;(q). (22) 

For  ! i> 3, one arrives at a general expression: 

/)~o(q ) = P;_  2 (~;)r ~- 32; + P ; _ ,  (~;)r ~- 2/~; (rT) + p ;  (~;)r~- ' G (4) 

+ Pz-l(~i)r~ 10/ 71_ pt(~;)r~l~i(q)" (23) 

3. Sufficient conditions for integrability of  the HiHer-Sucher-Feinberg density 

The sufficient conditions for integrability of the HSF density are obtained by 
setting the first four partial densities, {~t(q), 0 ~< l ~< 3}, to zero. In this section we 
consider explicitly two of the resulting conditions namely: 

&(O) = ( 2 ~ ) - ' < ~  I 5-', zS5°>(q)[ ~ >  = --(2rc)-l*J " ( ~  I )-~, (lYi19) I~ )  = O, (24) 
i i 

and 

01(0/ = (2tO 1<~1~ 15}')(q)lk~) 
i 

= ( 2 = ) - l ( T t l Z  {(4 x if ;)"(4 x if;) +~; • (V;19) 
i 

- (,~. o)[0. ( ~ 1 ] } 1  ~> = o. 
Equations (24) and (25) can be greatly simplified by noting that: 

(25) 

(ff;19) + ~ (1~ 19) = 0, (26) 
i A 

and 

~, ~;" (V; 19) + ~ Fa" (1~ 19) = - 19, (27) 
i A 

(4 x lY;). (• x G) = ¢2 _ (r~. IY,)(0 • 17;), (28) 

[(0" ?J)(O • IY;),/1] = (4" F;)[q • (1~ P)] + (4" lY,)(# " [~), (29) 

w he r e /q  is the Hamiltonian of the system under consideration. 
Application of the above relations yields: 

00(01 = (2G1 10 " ( ~  [ 2 (VA J'~11 ~ = - - ( 2 ~ 1 - 1 ( 0  " A~YA) ' A (30) 

with fa  denoting the He l lmann-Feynman  force acting upon nucleus A, and: 

0, (01 = (2~1 - '  ( ~' I Y~ { ¢2 - (4 .  G I (0 .  G ) + ~,. ~, 19 - (~,. 0t[0 .  (~; P)] } I ~' } 
f 

= --(2rc)-1 { (~121p + 12+~ FA " A  (GPtI~> 

+ (~'lZ, [(4 ~,1(0 ¢,1, ~/]1~'>}, (31/ 
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where ir is the kinetic energy operator. The higher-order partial densities can be 
obtained in an analogous way by applying hypervirial commutators similar to 
that of Eq. (29). 

Inspection of Eq. (30) reveals that the magnitude of the zeroth-order partial 
density is closely related to the sum of the Hellmann-Feynman forces on nuclei. 
This sum vanishes for many types of trial wavefunctions. Since 0o(0) yields zero 
upon spherical averaging, in principle it could be integrated, but only if the 
integration over the angular variables was carried out first. The same is true 
about all partial densities 0k(0) with even values of k. The magnitude of the 
first-order partial density reflects the accuracy to which the virial theorem is 
satisfied by the trial wavefunction. This becomes obvious when one considers a 
spherically averaged 01 (0): 

0~ ver : (3~) --l(~tT/I 2 [~2 .q_ ri" I 
i 

= -(3~)- l (~Pl2iP+ I 7 + ~  ~A • (cA v>. 
A 

(32) 

To illustrate the above points, let us consider the case of the ls state of the 
hydrogen-like atom with: 

~" = - Z r  -1, (33) 

and a general trial wavefunction 7~(r) that decays at least exponentially for large 
r. Direct application of Eqs. (5) and (6) yields: 

f0 O(R) = (4/3R) r!P*(Z7 t + 27  F + r~" )  dr 

+ (2/3) r-2~p,[ _ Z ( R  2 _ 3r2)~ _ 2R2(~p, _ rTj,,)] dr. (34) 

One immediately notes that, for large R, the second integral dies off at least 
exponentially and the asymptotic behavior of 0(R) is given by the first term of 
Eq. (34), which can be easily shown to be equal (in the limit of large R) to 

0(R) --, - ( 1 / 3 ~ R ) ( ~  122 ~ + ~1 ~ ) ,  (35) 

in agreement with Eqs. (30)-(32). 

4. Conclusions 

The Hiller-Sucher-Feinberg identity does not afford electron density that is 
integrable in general. This conclusion is drawn from the long-distance asymptotic 
expansion for 0(R). Although this means that an unmodified HSF density cannot 
be utilized in evaluation of expectation values of one-electron operators, knowl- 
edge of its long-distance behavior makes suitable renormalization of 0(R) 
possible, which might result in elimination of the infinities encountered in the 
integrations over electronic coordinates. 
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